

Luminaires with UV light disinfection technology for the sanitization of surfaces

MADE IN ITALY

UV light: ultraviolet light to sanitize surfaces

We're live surrounded by microorganisms: bacteria, viruses, moulds, yeasts and protozoa. Shortwave UV radiation is a very effective physical method for eliminating and inactivating these microorganisms. The nuclei in the cells are subjected

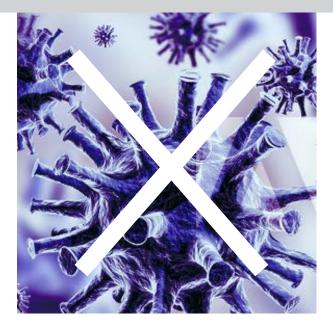
to a photolytic reaction that prevents their replication.

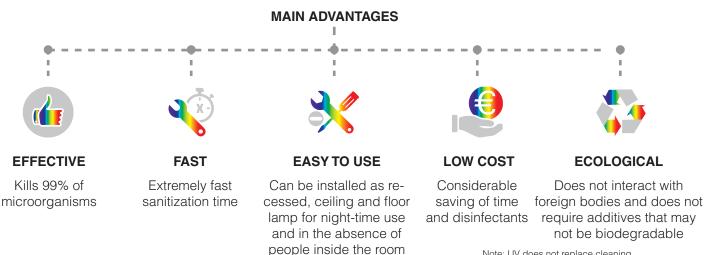
UV C

700nm

650nm

50nm


400nm


Fosnova

The germicidal effect of light is provided in the shortwave UV band below 320 nm.

UV irradiation is the most RELIABLE, ECO-FRIENDLY, EASY-TO-USE and LOW-COST method for sanitizing the surfaces in the spaces where we spend most of our time.

Note: UV does not replace cleaning

Reliable

Scientific research has shown that ultraviolet rays can affect water and air-borne microorganisms, be they bacteria, viruses, fungi, algae, spores, or other (Note: before installing luminaires fitting UV sources, be sure to contact a qualified technician for the design stage).

Ecological

UV radiation is a physical, not a chemical, disinfection system. UV rays act on the nucleus of the cell that, when properly irradiated, is subjected to a reaction that prevents the reproduction process in a completely natural way (without using chemical disinfectants).

Low-cost

Disinfection with ultraviolet lamps is currently the most economical option offered by technology.

Desian

The Disano group is happy to offer expert advice to designers when planning the space where the lights will be installed.

The presence of people is allowed

lighting

Versions also including general

The presence of people is not allowed

UV light: the ideal sanitization of all spaces

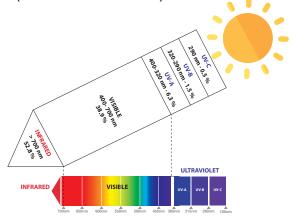
Highly frequented places can be sanitized with UV lamps. UV rays trigger a photochemical reaction within the microorganisms damaging their protein structure to alter their DNA/RNA. This makes them harmless and unable to replicate, preventing the spread of contagion, disease or damage.

Ultraviolet germicidal irradiation is a safe, proven and effective technology to eliminate microorganisms like bacteria, viruses, fungi, spores, mites and moulds.

It ensures bacteriologically controlled surfaces and can be used in luminaires for the bacteriological sanitization of:

- offices schools
- waiting rooms medical studios
- bars and restaurants
- shopping centres shops
- gyms locker rooms
- · beauty salons and wellness centres
- hotels
- kitchens and public rest rooms
- common work areas

Before installing UV luminaires, be sure to entrust the lighting design to a professional lighting designer.


UV-A and UV-C LED

The spectral range of ultraviolet radiation is, by definition, between 100 and 400 nm (1 nm = 10^{-9} m) and it is not visible to the naked eye.

Thanks to the filtering action of the Earth's atmosphere, most UV in nature is UV-A, a very small portion is UV-B, and UV-C rays are practically absent.

Artificial UV sources have been available on the market for several decades. Based on their wavelength, they can be used in different sectors and applications.

- UV-A (long wave)
 315 to 400 nm
 (for medical and industrial use) school
- UV-B (medium wave) 280 to 315 nm (for curative medical use)
- UV-C (short wave)
 100 to 280 nm
 (for sanitization)

schools	
gyms	
factories	
offices	
stores	A
hotels	
dentists/beauticians	
waiting rooms	24h
shopping malls	
hospitals and health centres	

disano illuminazione

The **UV-A** light modules are less aggressive than the UV-C modules and require <u>longer sanitization time.</u> It is therefore necessary to control ON/OFF times based on the absence/ presence of people in the room. For example: sanitization can be carried out at night, on weekends, on holidays, on certain weekdays, when certain areas are closed. The **UV-C** light modules are more aggressive than UV-A modules and allow shorter sanitization time. We recommend equipping the system with "absence devices" (sensors or smart technology) so that the UV-C modules will activate only when <u>nobody is in the room.</u>

application tips

UV-A: long sanitization time	UV-C: very short sanitization time
at night, weekends, holidays (in the absence of people)	temporary absence in a room (in the absence of people)
 classrooms corridors gyms laboratories 	 break when exiting the classroom to move to another classroom
training areascommon areas	when moving from one lesson to the nextlocker rooms
 production storage common areas	assembly chain breaklunch break
 open space common areas restrooms	lunch breakin rooms between one conference and the next
saleswarehouses	fitting rooms (between one customer and the next)
utility roomskitchensbars and restaurants	receptionwhen changing roomwhen cleaning empty common areas
all areas	when moving from a room to the next
• all areas	during short closures to the public
• all areas	 after cleaning bathrooms and transit areas (before re-opening to the public)
all areas except patient/visitor rooms	 when the staff leaves their work station for patient visits or rounds

UV light: special mounting tips

The human eye cannot see ultraviolet light. Exposure to UV-B and UV-C radiation without using skin or eye protection may cause erythema (reddening of the skin) or conjunctivitis (inflammation of the eye).

The use of UV sources, especially those in the UV-C wavelength band, require special attention as they can cause inflammation and damage, sometimes even permanently. This is why it is essential that UV sources are used when there are no people and/or animals in the room.

- Use of timers or time switchers (on-off timers)
- Use of "absence" detectors (sensors)
- Use of SMART control devices to control the lighting system

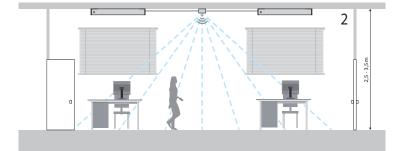
Fosnova

UV luminaires can be installed in a room by simply connecting them to the lighting system.

This type of application requires the supervision of a qualified installer who will assess the safety of the system, based on whether or not people* are inside the room.

* NOTE:

• UV light may cause serious damage to the skin or the eyes, therefore avoid direct exposure on humans, animals and plants.


• Lighting fixtures equipped with UV-C LED sources must be **used only in the absence of people.**

Luminaires must be installed by qualified staff to ensure compliance with safety and radiation protection requirements.

Example of installation with "absence" sensors

1) When the power supply is switched on and the sensor doesn't detect any presence in the room for 60 seconds, the UV lamp will turn on and a red LED light will be visible.

2) As soon as the sensor detects movement, the UV lamp will automatically go off (together with the red LED light).

3) If 60 seconds go by and no movement is detected, the lamp will turn on again (in the UV mode) and the red LED light will be visible again.

Mounting recommendations

Before installing UV luminaires, **be sure to entrust the lighting design to a professional lighting designer.**

The main factors to consider for a proper use of UV sources are:

- radiated power
- exposure time
- distance

For a UV lamp to be effective on spores, germs, bacteria and viruses, the lighting system must be designed so that the above parameters are correctly combined in order to achieve the desired results according to scientific/academic studies and literature.

N.B.: UV dose varies based on the type of microorganism to be eliminated for the deactivation to be effective (see table). Microorganisms on surfaces that are not directly exposed to UV radiation (hidden or in shadow) will not be eliminated.

Define the dose and time necessary to eliminate pathogens:

UV dose is based on intensity and time

Irradiation

Fosnova

Microorganism

Bacillus anthracis(vege

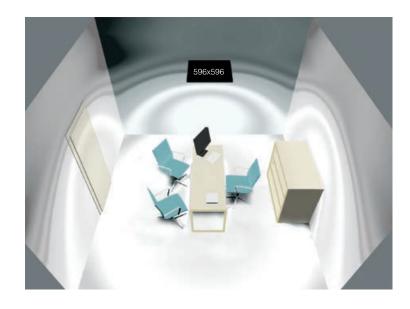
	(⊢	lo)	(K)		
	Ra	adiant	Decay Rate		
	E>	posure	С	onstant	
	J	• m-2	m	² · J-1	
etative)	45,2		0,05	
ores)				0,0031	
		40,0		0,058	
eg.)		37,5		0,061	
pores)		28,0		0,082	
		32,0		0,072	
		71,0		0,032	

	(⊢	lo)	(K	()
Mioroorgoniom	Ra	adiant	D	ecay Rate
Microorganism	E>	posure		onstant
	J	• m-2	m	² · J-1
Streptococcus lactis		61,5		0,037
Streptococcus viridians		20,0		0,115
Clostridium tetani		49,0		0,047
		21,6		0,107
Streptococcus pyogenes		,		0,616
1, 1, 0				0,107
Streptococcus salivarius		20,0		0,115
Streptococcus albus		18,4		0,125
B. prodigiosus		8,3		0,329
B. pyocyaneus		55,0		0,052
				0,099
				0,472
Mycobacterium tuberculosis				0,213
		100,0		0,023
Mycobacterium kansasii				0,036
Mycobacterium avium-intra.				0,041
Escheria coli				0,093
				0,376
Haemophilus influenzae				0,060
Adenovirus				0,055
				0,0047
Vaccinia				0,153
Vaccina				0,155
Coxsackievirus				0,111
Influenza A				0,119
Cryptococcus neoformans				0,010
Fusarium oxysporum				0,011
Fusarium solani				0,0071
Penicillium italicum				0,013
Penicillium digitatum				0,0072
Rhizopus nigricans spores				0,0086
Cladosporium herbarum				0,0037
Scopulariopsis brevicaulis				0,0034
Mucor mucedo				0,0040
Penicillium chrysogenum				0,0043
Aspergillus amstelodami				0,0034
Fusarium oxysporum				0,011
Fusarium solani				0,0071
Penicillium italicum				0,013
Penicillium digitatum				0,0072

Bacillus anthracis (spo S. enteritidis B. megatherium sp. (ve B. megatherium sp. (sp B. paratyphosus B. subtilis (mixed) 60,0 0,038 B. subtilis spores 120,0 0,019 Corynebacterium diptheriae 34,0 0,068 0,108 Eberthella typhosa 21,4 Micrococcus candidus 60,5 0,038 Micrococcus piltonensis 81,0 0,028 Micrococcus sphaeroides 100,0 0,023 44,0 0,052 Neisseria catarrhalis Phytomonas tumefaciens 44,0 0,052 Proteus vulgaris 27,0 0,085 0.238 Pseudomonas aeruginosa 0,572 55,0 0,042 Pseudomonas florescens 35,0 0,066 80,0 0,029 S. typhimurium Sarcina lutea 197,0 0.012 24,2 0,095 22,0 0,105 8,3 0,277 Serratia marcesens 0,221 0,214 0,445 Dysentery bacilli 22,0 0,105 Shigella paradysenteriae 16,8 0,137 Spirillum rubrum 44,0 0,052 21,8 0,106 49,5 0,047 0,089 Staphylococcus aureus 0.348 0,042

0.960

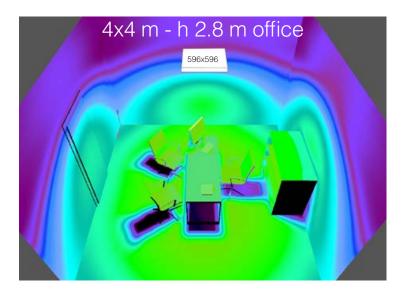
0,089


0,107

26,0

21,6

Streptococcus haemolyticus


Practical example of surface sanitization

Log Reduction Scale

The number in the log reduction value refers to the number of nines shown in the percentage, which indicates the percentage of microorganisms that are eliminated by a given disinfection procedure.

1-Log Reduction	=	90% inactivation	Classification
2-Log Reduction	=	99.9% inactivation	Detergent
3-Log Reduction	=	99.99% inactivation	Detergent/Sanitizing
4-Log Reduction		99.999% inactivation	Sanitizing
5-Log Reduction	=	99.9999% inactivation	Disinfectant
6-Log Reduction	=	99.99999% inactivation	Disinfectant
7-Log Reduction	=	99.999999% inactivation	Disinfectant
8-Log Reduction	=	99.9999999% inactivation	Disinfectant
9-Log Reduction	=	99.99999999% inactivation	Sterilant
10-Log Reduction	=	99.999999999% inactivation	

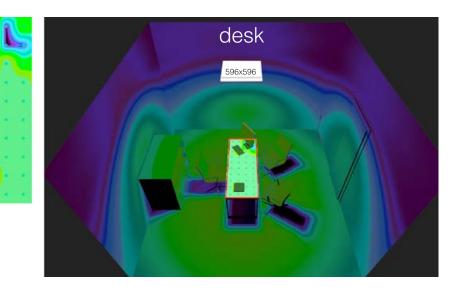
Irradiance and Fluence Scale 4x4 m office

E _e	0,00002	0,00003	0,00005	0,00007	0,0001	0,0002	0,0003	0,0005	0,00075	mW/cm ²
30 min	0,036	0,054	0,09	0,126	0,18	0,36	0,54	0,9	1,35	mJ/cm ²

Ee	0,001	0,002	0,003	0,005	0,0075	0,01	0,02	0,03	0,05	mW/cm ²
30 min	1,8	3,6	5,4	9	13,5	18	36	54	90	mJ/cm ²

Ee	0,075	0,1	0,2	0,3	0,5	0,75	1	1,5	mW/cm ²
30 min	135	180	360	540	900	1350	1800	2700	mJ/cm ²

Calculation area= 60x160cm h from ground= 75cm


Luminaire data:

- Luminaire= 596x596mm •
- Quantity= 1
- P(UV-C)= 3.95W
- P(Wtot)= 21 W •

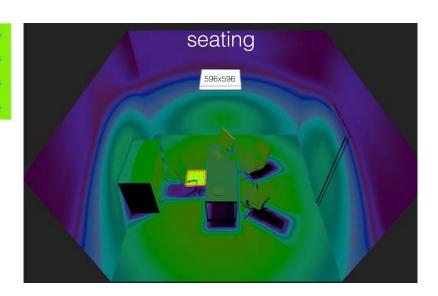
Results:

- Average irradiance: $E_e = 0,03 \text{ mW/cm}^2$ •
- Minimum irradiance: $\vec{E}_{min} = 0,01 \text{ mW/cm}^2$
- Uniformity: $U_0 = 70\%$ UV dose for Covid-19^{*} = 22 mJ/cm²

Log4 (estimated)= 30 min

Calculation area= 40x40cm h from ground= 45cm

Luminaire data:


- Luminaire= 596x596mm
- Quantity= 1
- P(UV-C)= 3.95W
- P(Wtot) = 21 W•

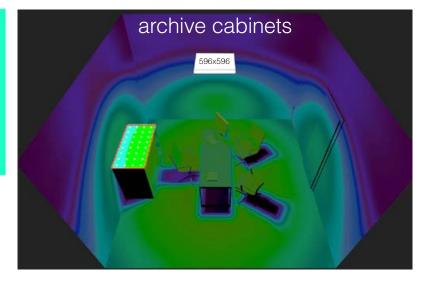
Results:

- •
- Average irradiance: $E_e = 0,024 \text{ mW/cm}^2$ Minimum irradiance: $E_{min} = 0,023 \text{ mW/cm}^2$
- Uniformity: $U_0 = 90\%$
- UV dose for Covid-19^{*} = 22 mJ/cm²

Log4 (estimated)= 16 min

Calculation area= 60x160cm h from ground= 75cm

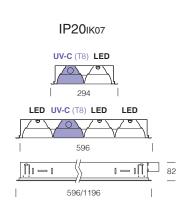
Luminaire data:


- Luminaire= 596x596mm
- Quantity= 1
- P(UV-C) = 3.95W.
- P(Wtot)= 21 W •

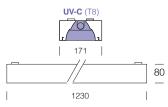
Results:

- Average irradiance: E_= 0,012 mW/cm²
- Minimum irradiance: E_{min} = 0,008 mW/cm²
- Uniformity : $U_0 = 65\%$ UV dose for Covid-19^{*} = 22 mJ/cm²

Log4 (estimated)= **48 min**



Comfort - UV-C (T8) tube + LED modules


4000K

E D

Housing: galvanized steel sheet.

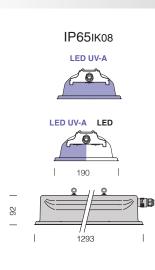
Optics: in scored matt aluminium with wide light distribution.

- separate switches: one for the general lights, the other for UV sanitization.
- complete with built-in UV module operating indicator to ensure the safety of people.

						CLD	CELL (T8)			
mm	colour	weight	code	LED	W tot	LUMEN OUTPUT (tq= 25 °C)	UV-C	W tot	UV-C (W) RADIATION	
294x596	white	2.20	151203-69	1x	10	4000K - 985lm - CRI 80	1x	21	3,95	
294x1196	white	4.10	151204-69	1x	19	4000K - 1970lm - CRI 80	1x	38	13	
596x596	white	3.50	151208-69	3x	28	4000K - 2985lm - CRI 80	1x	21	3,18	

777 Comfort - matt scored optical

					CLD		\sum			
mm	colour	weight	code	LED	W tot	LUMEN OUTPUT (tq= 25 °C)	UV-C	W tot	UV-C (W) RADIATION	
171x1230	white	3.50	141201-69	-	-	-	1x	38		· / 우



Before installing UV luminaires, be sure to entrust the lighting design to a professional lighting designer.

Forma - UV-A LED module + LED module

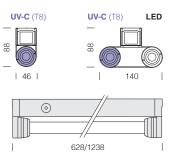
E D

	983 Forma												
						CLD	CELL (T8)						
mm	colour	weight	code	LED	W tot	LUMEN OUTPUT (tq= 25 °C)	UV-A	W tot	UV-A (W) RADIATION				
190x1293 mono.	s. silver	7.20	162465-65	-	-	-	1x	66	21				
190x1293 bil.	s. silver	7 20	162466-65	1x	43	4000K - 5820 lm - CBI 80	1x	66	21				

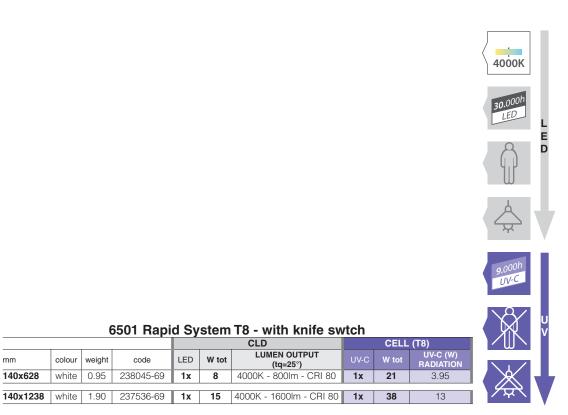
Housing: pressed steel, in a single piece of high mechanical resistance.

Diffuser: in technopolymer plastic specially designed for UV radiation lamps.

- separate switches: one • for the general lights, the other for UV sanitization.
- complete with built-in UV module operating indicator to ensure the safety of people.


Before installing UV luminaires, be sure to entrust the lighting design to a professional lighting designer.

Rapid System - UV-C (T8) tube + LED tube



6401 Rapid System T8 - with knife swtch

						CLD	CELL (T8)			
mm	colour	weight	code	LED	W tot	LUMEN OUTPUT (tq=25°)	UV-C	W tot	UV-C (W) RADIATION	
46x628	white	0.90	238040-69	-	-	-	1x	21	4,5	
46x1238	white	1.40	237531-69	-	-	-	1x	38	15	

IР40іков

acc.	641	6	one/two-lamp	diffuser

628 mm	237741-00			
1238 mm	237742-00			
Made of steel, pre-painted white with polyester resin.				
polyester resin.				

acc. 6405 upper cover				
628 mm	237603-46			
1238 mm	237604-46			
White steel. For ceiling mounting.				

Fixture housing: galvanized steel previously stove-enamelled with UV-stabilised white polyester resin; rounded edges to prevent cutting; polycarbonate end caps.

Standard supply: nylon fastening pawl supplied with power terminal block.

- separate switches: one for the general lights, the other for UV sanitization.
- complete with built-in UV module operating indicator to ensure the safety of people.

6000	Rapid	system	n - track

			S	
length	colour		weight	code
3260	white		3.25	132900-00
4700	white		4.70	132923-00
Designed to be guickly attached to the Bapid System series lumi-				

Designed to be quickly attached to the Rapid System series luminaires.

Liset 2.0 - UV-A LED module


Fosnova

Housing: extruded aluminium.

Terminal ends: die-cast aluminium.

- one switch for UV sanitization.
- complete with built-in UV module operating indicator to ensure the safety of people.

Suspension version: only direct light

direct/indirect light: ideal near air conditioning systems for the sanitization of the air exhausted from the conditioning system

Subcode to order: LED UV-A = -65

Before installing UV luminaires, be sure to entrust the lighting design to a professional lighting designer.

www.disano.it