

Luminarias con tecnología de emisión de rayos ultravioleta (UV): para la desinfección de superficies

Rayos **UV:**ultravioleta para
la desinfección
de superficies

Vivimos rodeados de microorganismos: bacterias, virus, mohos,
fermentos y protozoos. Un método
físico muy eficaz para su eliminación
está representado por la radiación
UV de longitud de onda corta, que
destruye e inactiva microorganismos.
Los núcleos de las células experimentan una acción de fotólisis que
detiene el proceso de reproducción.

El efecto germicida se manifiesta con radiaciones UV de longitud de onda corta, por debajo de 320 nm.

Los rayos UV representan el medio más SEGURO, ECOLÓGICO, SENCILLO y ECONÓMICO para desinfectar superficies en los entornos donde pasamos gran parte del día.

Actúa en el 99% de los microorganismos Extrema velocidad de desinfección

FACILIDAD DE USO

Se instala empotrado, en plafón y suspensión para uso nocturno y en ausencia de personas

tanto de tiempo como de material desinfectante

Ahorro considerable, No interactúa con cuerpos extraños ni necesita otros aditivos difíciles de biodegradar

nota: la limpieza de los entornos es siempre necesaria

Seguridad

Está científicamente demostrado que los rayos ultravioleta afectan a todos los microorganismos vivos en el agua y en el aire, ya sean bacterias, virus, hongos, algas, esporas, etc. (nota: antes de instalar luminarias con fuentes UV, es necesario confiar el diseño de la instalación a un técnico calificado).

Ecología

Los rayos UV son un sistema de desinfección físico y no químico. Actúan sobre el núcleo de la célula que, adecuadamente irradiada, sufre una acción que detiene el proceso de reproducción de forma totalmente natural. (sin el uso de desinfectantes químicos).

Económico

La desinfección mediante lámparas de rayos ultravioleta es la más económica de las varias posibilidades que actualmente ofrece la tecnología.

Diseño

El grupo Disano ofrece asesoramiento al diseñador que debe realizar el proyecto del entorno.

Permitida la presencia de personas

Versión también con iluminación general

Levenda

Prohibida la presencia de personas

Versiones solo con iluminación UV

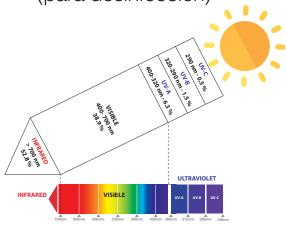
Rayos **UV:** desinfección ideal en todos los lugares

Los lugares muy frecuentados pueden sanearse iluminándolos con las lámparas UV. Los rayos ultravioleta logran desencadenar una reacción fotoquímica en el interior de microorganismos, dañando su estructura proteica para alterar su ADN/ARN, y volviéndolos inofensivos para que no puedan replicarse, evitando así la propagación de contagios, enfermedades o daños.

"Fosnova

La radiación ultravioleta germicida es una tecnología segura, probada y eficaz, para la reducción de microorganismos como bacterias, virus, hongos, esporas, ácaros y mohos. Aseguran superficies controladas bacteriológicamente. Se utilizan en luminarias para la desinfección bacteriológica de:

- oficinas escuelas
- salas de espera consultorios médicos
- bares y restaurantes
- centros comerciales tiendas
- gimnasios vestuarios
- centros de belleza y cuidado personal
- hoteles
- cocinas y aseos públicos
- áreas de trabajo comunes



El intervalo espectral de la radiación ultravioleta se encuentra, por definición, entre 100 y 400 nm (1 nm = 10⁻⁹ m) y es invisible al ojo humano. Gracias a la acción de filtrado de la atmósfera terrestre, en la naturaleza están presentes los UV-A (en gran parte) y los UV-B (en porcentaje muy pequeño), mientras que los rayos UV-C están prácticamente ausentes.

Desde hace varias décadas, se encuentran en el mercado fuentes UV artificiales que, en virtud de la longitud de onda, se utilizan en diferentes sectores/aplicaciones.

- UV-A (onda larga)
 de 315 a 400 nm
 (para uso médico, industrial)
- UV-B (onda media)
 de 280 a 315 nm
 (para uso médico curativo)
- UV-C (onda corta)
 de 100 a 280 nm
 (para desinfección)

escuelas	→
gimnasios	
industrias	
oficinas	
tiendas	
hoteles	401
dentistas/esteticistas	
salas de espera comunes	24h
centros comerciales	
hospitales y consultorios médicos	

Los módulos **UV-A** son menos agresivos que los módulos UV-C, por lo tanto, tardan menos tiempo para desinfectar. Es suficiente gestionar el encendido en función del horario en el cual las personas están ausentes. Por ejemplo: desinfección nocturna, fines de semana, días de fiesta y vacaciones, cierres programados de algunas zonas.

Los módulos **UV-C** son más agresivos que los módulos UV-A, por lo tanto, <u>desinfectan los entornos más rápidamente.</u>

Se recomienda la presencia de «sistemas de ausencia» en la instalación (sensores o tecnologías smart) para que los módulos UV-C se enciendan solo cuando las personas no estén presentes en los lugares.

sugerencias de aplicación

ejemplo UV-A : tiempos largos	ejemplo UV-C : tiempos muy breves
noche, fin de semana, días de fiesta (en completa ausencia de personas)	periodo entre presencia-presencia (en completa ausencia de personas)
aulaspasillosgimnasioslaboratorios	pausaal salir del aula para realizar actividades en otra clase
 áreas de entrenamiento libre zonas comunes	entre el cambio de un curso y otrovestuarios
producciónalmacenamientoáreas comunes	pausa cadena de montajepausa almuerzo
espacios abiertosáreas comunesservicios	pausa almuerzoen aulas entre una conferencia y otra
ventaalmacenes	probadores (entre un cliente y otro)
locales técnicoscocinasbares y restaurantes	 recepción cambio habitación durante la limpieza de los lugares comunes no frecuentados
todas las zonas	entre el paso de una cabina de tratamiento a otra
todas las zonas	durante las breves pausas de cierre al público
todas las zonas	después de la limpieza de aseos comunes y zonas de paso (antes de reabrir al público)
 todas las zonas menos habitación de hospital/ visita 	donde el personal deja el lugar para visitas o exámenes

Rayos **UV:**medidas especiales de instalación

El ojo humano no tiene la capacidad de percibir los rayos ultravioleta bajo forma de luz.

En los casos de fuerte exposición sin la protección necesaria de la piel y los ojos, las radiaciones de los grupos UV-B y UV-C pueden provocar eritemas (enrojecimiento de la piel) y conjuntivitis (inflamación de los ojos).

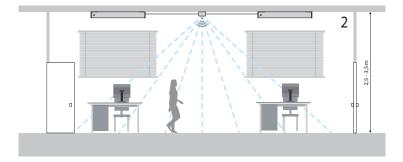
El uso de fuentes UV y, en particular, de aquellas con longitud de onda clasificable como UV-C requiere especial atención, ya que pueden provocar inflamación e incluso daños permanentes: por eso es fundamental garantizar la ausencia de personas y/o animales dentro del lugar en el que funcionan las fuentes UV.

- Uso de temporizadores o limitadores de tiempo de funcionamiento (relojes temporizados on-off).
- Uso de detectores de «ausencia» (sensores).
- Uso de un sistema de control SMART para la gestión de la instalación

"Fosnova

Las luminarias con tecnología de rayos UV se instalan dentro de un entorno simplemente conectándolas al sistema. Este tipo de aplicación requiere la supervisión de instaladores calificados que evalúen la seguridad, en función de la presencia o ausencia de personas* dentro de esos entornos.


* ATENCIÓN:


- La luz UV-C puede causar da
 ños graves en la piel o lesiones agudas en los ojos; por favor, evite la exposición directa a humanos, animales o plantas.
- Las luminarias equipadas con LED UV-C deben utilizarse solo en ausencia de personas.

Las luminarias deben ser instaladas por personal calificado para garantizar el cumplimiento de la legislación y las normas de protección radiológica.

Ejemplo de instalación con sensor de «ausencia»

- 1) Con la fuente de alimentación encendida, cuando el sensor no detecta ninguna presencia, pasados 60 segundos, la luminaria activará la fuente UV y simultáneamente se encenderá un LED de señalización (rojo).
- **2)** Si el sensor detecta movimiento, la iluminación UV se apagará automáticamente (así como el LED rojo de señalización).
- **3)** Pasados 60 segundos desde que se detectó el movimiento, la luminaria volverá a encenderse (en la función UV) reactivando el LED rojo de advertencia.

Recomendaciones de instalación

Antes de instalar luminarias con fuentes UV, es necesario confiar el diseño de la instalación a un técnico calificado. Los principales factores que deben tenerse en cuenta para un uso correcto de las fuentes UV son:

- potencia irradiada
- tiempo de exposición
- distancia

Para estar seguro de la eficacia de una fuente de UV en esporas, gérmenes, bacterias y virus, es esencial diseñar el sistema de tal manera que los parámetros anteriores se combinen correctamente para obtener el resultado esperado sobre la base estudios científicos/universitarios o de literatura relevante.

Nota: según el microorganismo, se debe utilizar una dosis diferente para que la desactivación sea eficaz (ver tabla). Los microorganismos de las superficies que no estén directamente expuestos a la radiación UV (ocultas o a la sombra) no se eliminarán.

Definir la dosis y el tiempo necesario para eliminar los agentes patógenos: la dosis se basa en la intensidad y el tiempo

Irradiación

 $\frac{\mathsf{W}}{\mathsf{m}^2}$

X

Tiempo

seg. =

dosis UV

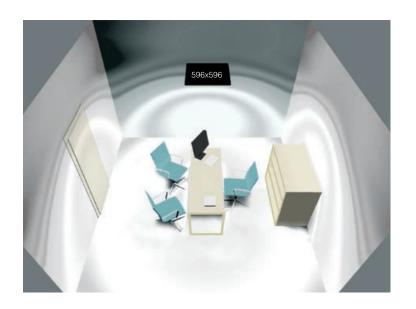
"Ifosnova

Microorganism	Ex	diant posure	Co	ecay Rate onstant	
	J.	m- ²	m ²	² · J-1	
Bacillus anthracis(vegetative)	45,2		0,05	
Bacillus anthracis (spores)				0,0031	
S. enteritidis		40,0		0,058	
B. megatherium sp. (veg.)		37,5		0,061	
B. megatherium sp. (spores)		28,0		0,082	
B. paratyphosus		32,0		0,072	
D		71,0		0,032	
B. subtilis (mixed)		60,0		0,038	
B. subtilis spores		120,0		0,019	
Corynebacterium diptheriae		34,0		0,068	
Eberthella typhosa		21,4		0,108	
Micrococcus candidus		60,5		0,038	
Micrococcus piltonensis		81,0		0,028	
Micrococcus sphaeroides		100,0		0,023	
Neisseria catarrhalis		44,0		0,052	
Phytomonas tumefaciens		44,0		0,052	
Proteus vulgaris		27,0		0,085	
				0,238	
Pseudomonas aeruginosa				0,572	
		55,0		0,042	
Pseudomonas florescens		35,0		0,066	
S. typhimurium		80,0		0,029	
Sarcina lutea		197,0		0,012	
		24,2		0,095	
		22,0		0,105	
Serratia marcesens		8,3		0,277	
Serratia marcesens	L			0,221	
				0,214	
				0,445	
Dysentery bacilli		22,0		0,105	
Shigella paradysenteriae		16,8		0,137	
Spirillum rubrum		44,0		0,052	
		21,8		0,106	
		49,5		0,047	
Staphylococcus aureus				0,089	
otapriyiococcus auteus				0,348	
	- 1			0.040	

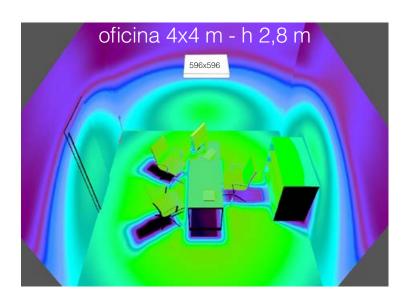
Microorganism	Exposure	Decay Rate Constant				
	J·m-2	m² · J-1				
Streptococcus lactis	61,5	0,037				
Streptococcus viridians	20,0	0,037				
Clostridium tetani	49,0	0,047				
Ciostildidili tetalii	21,6	0,107				
Streptococcus pyogenes	21,0	0,616				
Streptococcus pyogenes		0,107				
Streptococcus salivarius	20,0	0,115				
Streptococcus albus	18,4	0,125				
B. prodigiosus	8,3	0,329				
B. pyocyaneus	55,0	0,052				
b. pyocyaneus	33,0	0,099				
		0,472				
Mycobacterium tuberculosis		0,472				
	100,0	0,023				
Mycobacterium kansasii	100,0	0,025				
Mycobacterium avium-intra.		0,041				
Mycobacterium avium-intra.		0,041				
Escheria coli		0,376				
Haemophilus influenzae		0,060				
riaemoprilius iriliuerizae		0,055				
Adenovirus		0,0047				
Vaccinia		0,153				
Vaccina		0,155				
Coxsackievirus		0,111				
Influenza A		0,119				
Cryptococcus neoformans		0,010				
Fusarium oxysporum		0,011				
Fusarium solani		0,0071				
Penicillium italicum		0,013				
Penicillium digitatum		0,0072				
Rhizopus nigricans spores		0,0072				
Cladosporium herbarum		0,0037				
Scopulariopsis brevicaulis		0,0034				
Mucor mucedo		0,0040				
Penicillium chrysogenum		0,0043				
Aspergillus amstelodami		0,0043				
Fusarium oxysporum		0,011				
Fusarium solani		0,0071				
Penicillium italicum		0,013				
Penicillium digitatum		0,0072				

0,042 0,960

0,089


0,107

26,0


21,6

Streptococcus haemolyticus

Ejemplo práctico de desinfección en superficies

		E	scala Log	
		0 0	ual al número de cción de la pres	9 que expresan sión infecciosa
Reducción	1 Log=	inactivación	90%	Clasificación
Reducción	2 Log=	inactivación	99,9%	Detergente
Reducción	3 Log=	inactivación	99,99%	Detergente/Germicida
Reducción	4 Log=	inactivación	99,999%	Germicida
Reducción	5 Log=	inactivación	99,9999%	Desinfectante
Reducción	6 Log=	inactivación	99,99999%	Desinfectante
Reducción	7 Log=	inactivación	99,999999%	Desinfectante
Reducción	8 Log=	inactivación	99,999999%	Desinfectante
Reducción	9 Log=	inactivación	99,9999999%	Esterilizante
Reducción	10 Log=	inactivación	99,99999999%	

Escala de irradiancia y fluencia oficina 4x4m

E _e	0,00002	0,00003	0,00005	0,00007	0,0001	0,0002	0,0003	0,0005	0,00075	mW/cm ²
30 min	0,036	0,054	0,09	0,126	0,18	0,36	0,54	0,9	1,35	mJ/cm²

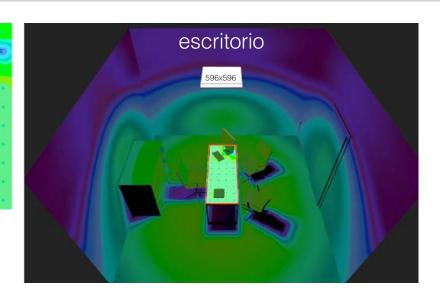
E _e	0,001	0,002	0,003	0,005	0,0075	0,01	0,02	0,03	0,05	mW/cm ²
30 min	1,8	3,6	5,4	9	13,5	18	36	54	90	mJ/cm²

E _e	0,075	0,1	0,2	0,3	0,5	0,75	1	1,5	mW/cm ²
30 min	135	180	360	540	900	1350	1800	2700	mJ/cm²

Área de cálculo= 60x160cm h desde el suelo= 75cm

Datos de la luminaria:

- Luminaria= 596x596mm
- Cantidad= 1
- P(UV-C)= 3.95W
- P(Wtot)= 21 W


Resultados:

- Irradiancia media: $E_e = 0.03 \text{ mW/cm}^2$ Irradiancia min: $E_{min} = 0.01 \text{ mW/cm}^2$ Uniformidad: $U_0 = 70\%$

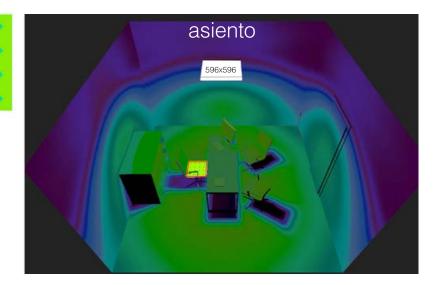
- Dosis UV para Covid-19*= 22 mJ/cm²

Log4 (estimado)= 30 min

Área de cálculo= 40x40cm h desde el suelo= 45cm

Datos de la luminaria:

- Luminaria = 596x596mm
- Cantidad= 1
- P(UV-C)= 3.95W
- P(Wtot) = 21 W


Resultados:

- Irradiancia media: E_e = 0,024 mW/cm 2

- Irradiancia min: $E_{min} = 0.023 \text{ mW/cm}^2$ Uniformidad: $U_0 = 90\%$ Dosis UV para Covid-19*= 22 mJ/cm²

Log4 (estimado)= 16 min

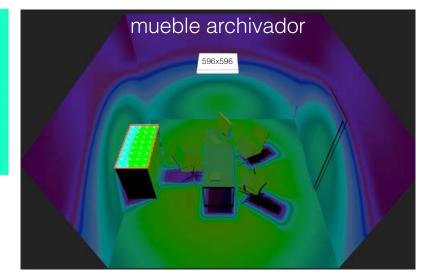
Datos de la luminaria:

h desde el suelo= 75cm

Luminaria = 596x596mm

Área de cálculo= 60x160cm

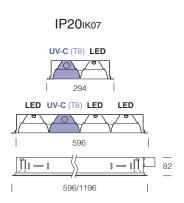
- Cantidad= 1
- P(UV-C)= 3.95W
- P(Wtot) = 21 W


Resultados:

- Ilrradiancia media: E_e= 0,012 mW/cm² Irradiancia min: E_{min}= 0,008 mW/cm² Uniformidad: U₀ = 65%

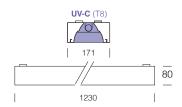
- Dosis UV para Covid-19* = 22 mJ/cm²

Log4 (estimado)= 48 min



Dosis UV para Covid-19: según las publicaciones científicas disponibles actualmente

Comfort - tubo UV-C (T8) + módulos LED



Cuerpo: en chapa de acero galvanizado.

Óptica: de aluminio satinado estriado con una amplia distribución luminosa.

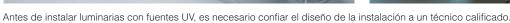
- encendidos separados: un encendido para la iluminación general, y el otro para la desinfección UV.
- incluye un indicador de funcionamiento de módulos UV incorporado para la seguridad personal.

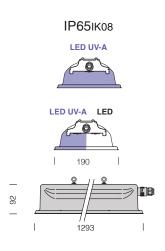
877 Comfort - óptica satinada rayada

					0 0 0.0	a			
						CLD		CELL	. (T8)
mm	color	peso	código	LED	W tot	LÚMENES DE SALIDA (tq=25°)	UV-C	W tot	RADIACIÓN UV-C (W)
294x596	blanco	2.20	151203-69	1x	10	4000K - 985lm - CRI80	1x	21	3,95
294x1196	blanco	4.10	151204-69	1x	19	4000K - 1970lm - CRI80	1x	38	13
	•								
596x596	blanco	3.50	151208-69	3x	28	4000K - 2985lm - CRI80	1x	21	3,18

877 Comfort - óptica satinada rayada

						CLD	CELL (T8)		
mm	color	peso	código	LED	W tot	LÚMENES DE SALIDA (tq=25°)	UV-C	W tot	RADIACIÓN UV-C (W)
171x1230	blanco	3.50	141201-69	-	-	-	1x	38	10,6





Forma - módulo LED UV-A + módulo LED

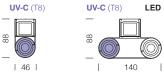
Cuerpo: en acero prensado, embutido en una única pieza de elevada resistencia mecánica.

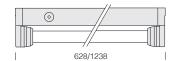
Difusor: en tecnopolímero específico para radiación UV.

- encendidos separados: un encendido para la iluminación general, y el otro para la desinfección UV.
- incluye un indicador de funcionamiento de módulos UV incorporado para la seguridad personal.

	965 FORMA											
						CLD	CELL (T8)					
mm	color	peso	código	LED	W tot	LÚMENES DE SALIDA (tq=25°)	UV-A	W tot	RADIACIÓN UV-A (W)			
190x1293 mono.	plata est.	7.20	162465-65	-	-	-	1x	66	21			
190x1293 bil.	plata est.	7.20	162466-65	1x	43	4000K - 5820 lm - CRI 80	1x	66	21			

002 Earma





Rapid System - tubo UV-C (T8) + tubo LED

IP40IK07

6401 Rapid System T8 - con seccionador

					CLD			CELL (T8)		
mm	color	peso	código	LED	W tot	LÚMENES DE SALIDA (tq=25°)	UV-C	W tot	RADIACIÓN UV-C (W)	
46x628	blanco	0.90	238040-69	-	-	-	1x	21	4,5	
46x1238	blanco	1.40	237531-69	-	-	-	1x	38	15	

Cuerpo del aparato: de acero laminado cincado, prebarnizado en el horno con resina poliéster, estabilizada a los rayos UV, con bordes plegados para evitar cortes y con tapas de policarbonato.

Dotación: pestillo de fijación de nylon con bornera de alimentación.

- encendidos separados: un encendido para la iluminación general, y el otro para la desinfección UV.
- incluye un indicador de funcionamiento de módulos UV incorporado para la seguridad personal.

6501 Rapid System T8 - con seccionador

					CLD		CELL (T8)		
mm	color	peso	código	LED	W tot	LÚMENES DE SALIDA (tq=25°)	UV-C	W tot	RADIACIÓN UV-C (W)
140x628	blanco	0.95	238045-69	1x	8	4000K - 800lm - CRI 80	1x	21	3.95
140x1238	blanco	1.90	237536-69	1x	15	4000K - 1600lm - CRI 80	1x	38	13

IP40IK08 ₹

acc. 6416 reflector mono/bi

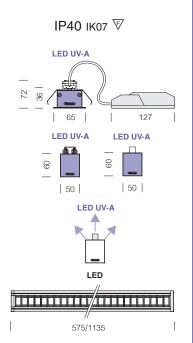
628 mm	237741-00		
1238 mm	237742-00		
De acero prehamizado con regina de			

De acero prebarnizado con resina de poliéster, color blanco.

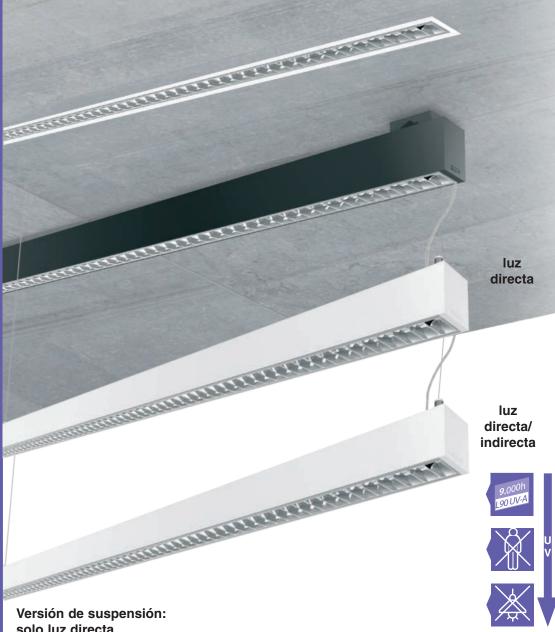
6000 Rapid system - carril civil

		Τ΄ ΄	S
medida	color	peso	código
3260	blanco	3.25	132900-00
4700	blanco	4.70	132923-00

Predispuesto para el montaje rápido de los aparatos de la serie Rapid System con los respectivos acesorios.


acc.	acc. 6405 cubre carril					
628 mm	237603-46					
1238 mm	237604-46					
Acero blanc	Acero blanco. Para fijación a techo.					

Liset 2.0 - módulo LED UV-A



Cuerpo: en aluminio extruido.

Cabezales: en aluminio inyectado fundido a presión.

- un único encendido para la desinfección UV.
- incluye un indicador de funcionamiento de módulos UV incorporado para la seguridad personal.

solo luz directa

luz directa/indirecta: ideal cerca de los sistemas de aire acondicionado para la desinfección del aire que emiten.

Subcódigos para el pedido:

LED UV-A = -65

